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The Terabyte Analysis Machine Project 
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James Annis, Gabriele Garzoglio, Kurt Ruthsmandorfer, Chris Stoughton 

Abstract: The Terabyte Analysis Machine is a cluster designed to allow research into the use of 

large scientific databases.  Our initial program is to explore efficient database re-indexing and re-

partitioning as a way to take maximal advantage of sophisticated algorithms for use in specific 

astronomical problems. The model is to allow the scientist to redistribute the database to make very 

efficient a specific problem, e.g., finding the kth nearest neighbor, and allow them to develop on 

that database for a month before moving onto the next redistribution scheme. We will discuss the 

main ideas of a prototype design, giving a few details on the kth nearest neighbor repartitioning 

module. 

Introduction 

The databases of modern physics and 

astronomy contain hundreds of millions of 

objects and have total sizes of order a 

Terabyte. Spatial data structures provide 

efficient multi-dimensional access methods to 

these large datasets. The database designers 

make use of spatial data structures that 

provide good general purpose access to the 

data. It is clear, however, that the best data 

structure to use depends on the problem to be 

solved. That is, the optimal indexing and 

partitioning of the data is most often 

algorithm dependent. 

The distance machine is an attempt to build 

an infrastructure to allowing physicists and 

astronomers access to the powerful 

algorithms requiring repartitioning and re-

indexing most relevant to their particular 

problem, without dealing with the low level 

issues of remote database access, 

authentication and parallelization.  

Proposal 

We propose to prototype a facility that 

acquires, re-indexes, and re-partitions a 

database. We aim to make it straightforward 

for the physical scientist to incorporate a 

spatial data structure based algorithm into the 

facility to guide the re-indexing and re-

partitioning. We choose as our example 

algorithm kth nearest neighbor finding. This 

problem is an area of active research in the 

computer science community (there are no 

exact solutions for dimensions greater than 10 

that are faster than a brute force scan), plays a 

central role in SPH numerical calculations of 

structure formation and, we believe, will form 

the basis of a state-of-the-art galaxy cluster 

finding algorithm. Brute force solutions to the 

kth nearest neighbor problem work, given 

enough compute power and time, but for 

dimensions of order 5, there are significant 

speed-ups that can be obtained from tree-

based algorithms. We wish to explore the 

usefulness of a facility where a database is 

repartitioned for an intermediate timescale, on 

order of a month, allowing the astronomer an 

efficient code development, testing, 

validation cycle with the data. 
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Scales 

The SDSS database will have: 

 500 Gbytes database 

 250 million objects 

 100 million galaxies 

 2.5 Kbytes object size 

 500 byte tag object size (example of 

tag with about 50 parameters of 

interest for the specific analysis) 

 50 Gbytes tag database 

Moving the tag database: 

 50 Gbytes at 10 Mbytes/sec => 1.5 

hours to transfer over network 

 50 Gbytes at 30 Mbytes/sec => 0.5 

hours to write to disk 

Dimensionality of the problem: 

 120 parameters per object 

 5 parameters used for cluster finding: 

ra, dec, g-r, r-i, and i'  

Prototype 

The Distance Machine does the following 

steps:  

1. extracts a tag database from SX  

2. places the tag database on local 

machines 

3. re-indexes and re-partitions the tag 

database 

4. queries the tag database and sends 

results to problem specific analysis 

tools 

The SDSS database architecture developed 

at JHU is called SX1; it currently relies on 

Objectivity. The distance machine will work 

on a subset of the SX, in a local tag database. 

A couple of techniques have been 

considered to implement the tag extractor 

module. The easiest one uses the analysis 

engine mode of SX. This technique, already 

implemented, queries SX for a subset of 

parameters from the objects of interest. The 

tag objects are sent from SX to TAM via a 

socket and then stored on local disk. The 

analysis engine approach has the advantage of 

being independent of underlying database. 

We are, however, planning to use 

Objectivity for the local database; this opens 

up some interesting possibilities. A tool of 

general interest could be built using a tag 

extraction layer intermediate between SX and 

Objectivity making use of Globus2 tools, 

similar in spirit to the CERN/Caltech CMS 

re-clustering tools3. This tool could extract 

the tag objects from Objectivity, store them 

remotely as Objectivity databases, and ship 

them to the extractor module via globusFTP 

agents. As such code exists, and naturally 

links to a grid infrastructure, we will examine 

this approach closely.  

Both approaches need the specification of a 

tag schema. The tag extractor needs the 

knowledge on the structure of the data to 

query SX for the subset of parameters of 

interest and for saving the objects locally. The 

new tag database will then rely on this 

schema for all the re-indexing, re-partitioning 

and querying operations. Having chosen 

Objectivity as tag database, DDL (Data 

Description Language) seems the natural 

choice to produce easily the code that has to 

be linked to the TAM module 

implementations. However, we are still 

investigating other options: there is soon to be 

technology inside SX to make defining new 

schema easy. This could allow the distance 

machine to offer facilities to deal with 

complex data structure keeping the coding of 

the schema a relatively easy process.  

The same schema definition will be part of 

the repartitioning module also. The core of 

our kth nearest neighbor module makes use of 

the Approximate Nearest Neighbors library 

(ANN)4. This library is well commented and 

implements several of the partitioning and 

searching algorithms available in 1998; also 

very important, it’s “off the shelf”. The most 

recent version of this C++ library (v0.2) 

represents a vector in the space as a pointer to 

an array of coordinate. The library offers 
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facility to build either a k-d tree or a b-d tree 

of the data and to search the kth nearest 

neighbor within this structure. This approach 

is fast and immediately of use for a data set 

size that fits into memory. As mentioned, we 

operate with tag databases of the order of 50 

Gbytes; therefore the modification of this 

library to deal with data laid on disk is 

necessary. The choice of Objectivity offers an 

easy way of implementing the persistency of 

the tags. We are implementing a general-

purpose wrapper that stores into memory a 

reference to the persistent object (plus other 

information of internal use, like the number 

of copies in memory of the same object). 

Overloading the operators of assignment and 

indexing, this wrapper presents ANN 

transparently a static representation of the 

space (as big as we need) in about ten bytes 

per object. 

At this point, the structure of the k-d tree, 

that has an object-oriented representation 

inside ANN, can be stored using again 

Objectivity. The leaf nodes of the tree are the 

natural re-indexing of the database for 

efficient nearest neighbor queries. That is, the 

natural re-partitioning of the database stores 

each non-empty node, whose size may range 

from 8 to 32 Kbytes (bucket size), 

sequentially in the database. Reasonable 

values of the Objectivity parameters are 32 

Kbytes for the page size, 6 - 60 Mbytes for 

the client cache size, 1 - 10 Mbytes for each 

container. This fine-tuning, aimed to enhance 

performance, has yet to be investigated. 

We believe this approach is generalizable to 

other algorithms, not necessarily kth nearest 

neighbor ones, allowing them to be placed in 

the infrastructure with little effort. Clearly a 

long term aim is to allow the definition of 

schema and interfaces (i.e. to the wrapper) 

that make possible the re-indexed and re-

clustered/re-partitioned of a database on the 

fly. 

Lastly, and perhaps outside the range of the 

prototype, is the challenge of parallelizing 

this operation. Divide and conquer techniques 

work well for this work, and the TAM is 

designed to make divide and conquer 

techniques easy. TAM is a cluster of 

(currently) 5 Linux machines, with 70Gbytes 

of local disk each plus a fibre channel 

connection to a common terabyte RAID box. 

The information of the disk layout is needed 

at the level of the re-clustering module, the 

design of which must include the notion of 

parallelization of the query process. There is 

more than one algorithm that can be 

implemented in order to exploit the parallel 

nearest neighbor search. We feel most 

confident with the so-called shadow 

technology, which defines replicated border 

regions that are included in the search of 

those query points that lay inside the non-

replicated portions. 

Schedule 

1. Tag extractor module: Jan 31 

2. Integrating ANN with Objectivity: Feb 14 

3. Re-clustering module: Feb 28 

4. Saving/Retrieving ANN trees: Mar 21 

5. Set up an analysis engine: Mar 31 
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